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Abstract 

The influence of cold and heated secondary 
flow on the instability of a two-stream, coplanar 
jet having a 0.7 Mach number heated primary jet 
for a nominal fan to primary velocity ratio of 
0.68 was investigated by means of inviscid lin- 
earized stability theory. 
erties of spatially growing axisymmetric and first 
order azimuthal disturbances were studied. It was 
found that the instability characteristics of the 
two-stream jet with a velocity ratio of 0.68 are 
very different from those of a single stream jet, 
and a two-stream, coplanar jet having a 0.9 Mach 
number heated primary jet and a cold secondary jet 
for a fan to primary velocity ratio of 0.30. For 
X / D  = 1 and in comparison to the case where the 
velocity ratio was 0.3, the presence of the fan 
stream with a velocity ratio of 0.68 enhanced the 
instability of the jet and increased the unstable 
frequency range. 
(m = 0) and the first order azimuthal mode (m = 1) 
have similar spatial growth rates where the veloc- 
ity ratio is 0.68 while for a velocity ratio of 
0.3 the growth rate of the first order azimuthal 
mode (m = 1) is greater. Comparing the cold and 
hot secondary flow results showed that for a 
velocity ratio of 0.68 the growth rate is greater 
for the case with cold secondary flow. 

The instability prop- 

However, the axisymmetric mode 

Nomenclature 

speed of sound, mls 

see Eq. (1) 

phase speed, m/s 

radial profile term 

eigenfunction 

velocity profile shape 

eigenvalue equation 

fi 
azimuthal wavenumber 

pressure 

radius 

radial position 

static temperature 

time, sec 

mean velocity on centerline at a given 

velocity components 
X I 4  

This paper is declared a work of the U.S. Government and i s  
no1 subject to copyripht protection in lhc United Slates. 

X axial position 

a complex eigenvalue wavenumber 

t? radian frequency 

AU 
- 

velocity difference, uclx - U, 
6 see Eq. (1) 

e momentum boundary layer thickness 

x see Eq. (8) 

P density 

cp cylindrical angular coordinate 

Subscripts: 

C compressible 

clx center line at a given x/Dp position 

e exterior solution 

h meeting point 

i i magi nary 

P primary jet 

r real 

S secondary or fan jet 

t temperature related 

0 interior solution 

m ambient 

Superscript : 

( I t  small disturbance 

( -1 mean value 

Introduction 

For many future aircraft, improvements in 
operation will be in part due to control and modi- 
fication of jet exhaust velocity and/or temperature 
characteristics. For example, the jet velocity and 
temperature impinging in the flap surfaces of a 
short takeoff and landing aircraft employing an 
under-the-wing blown flap for lift augmentation dur- 
ing takeoff and landing must be controlled in order 
to maintain flap loads and surface temperatures 
within acceptable limits for reasons of structural 
integrity and high-lift performance. Commercial 
supersonic transports and transatmospheric vehicles 
are other examples of future aircraft for which 
changes in the jet exhaust velocity and temperature 
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may be important since the jet exhaust noise must 
be reduced to achieve acceptable community noise 
levels. Coannular nozzles, mechanical suppressors, 
and thermal acoustic shields have successfully 
reduced jet noise. 

Temperature and velocity control is usually 
achieved through jet mixing with the surrounding 
medium. Normally, mixing is achieved using complex 
nozzle or shroud/ejector geometries with consequent 
weight penalties. Enhanced mixing using acoustic 
or aero/mechanical perturbing devices may reduce 
this weight penalty. Other situations where acous- 
tic and aero/mechanical excitation may be benefi- 
cial are discussed in Ref. 1. Due to these 
possible benefits the NASA Lewis Research Center 
has been supporting experimental , numerical nd 
theoretical research programs in this 

ity and static temperature decay for a sinqle plume 
jet was estimated using correlation methods in 
Ref. 9. Some of the data used in these correla- 
tions is from the results of the comprehensive 
experimental and theoretical research program 
presented in Refs. 2 to 6 which included both hot 
and cold flows. Additional cold flow results are 
reported in Ref. 8. A s  part of a program to obtain 
similar information for mixing jets, the unexcited 
velocity and temperature characteristics of two- 
stream coplanar jet exhaust plumes was investigated 
in Ref. 10. In addition to information on axial 
velocity and temperature decay, Ref. 10 also pre- 
sents typical radial velocity and temperature pro- 
files. In an earlier paper, the influence of the 
second stream on the instability of a two-stream, 
coplanar jet with only the primary stream heated 
for a nominal secondary t primary velocity ratio 
of 0.3 was investigated.lP In the present paper, 
the radial velocity and temperature profiles for a 
secondary to primary velocity ratio of 0.68 for hot 
and cold secondary flow are used to determine the 
phase speed and spatial growth rate of pressure 
instability waves. 

instabi 1 ity of spatially growing disturbances in 
the free boundary layer of a jet having a single 
inflection point was presented by Michalke.12 
The two-stream coplanar jet studied herein has two 
inflection points. A s  far as the author can deter- 
mine, little work has been done to tudy free shear 
layers with two inflection points.lS However, the 
instability of a circular incompressible jet with 
external flow was analyzed by means of linearized 
stability theory by Michalke and Herman.14 For 
the Mach number range of the present study (around 
M = 0.7) the flow is compressible. The instability 
of spatially growing disturbances propagating isen- 
tropically in a circular jet for flo in this Mach 
number range was studied by Michalkey5 and 
Morris. 16  

In this study viscous effect nd effects due 
to the slowly diverging jet flow15-8g are 
neglected. Furthermore, the analysis follows that 
of Michalke15 where it was assumed that disturb- 
ances propagate isentropically. Because the large 
scale structure of turbulence in a circular jet is 
dominated by the axisymmetric and first order azi- 
muthal components,20 the stability calculations 
are restricted to these two components. Since the 
long term behavior of the disturbances depends on 

The effect of excitatior on centerline veloc- 

An excellent review of recent research on the 

only the most rapidly growing spatial modes, 
information will be presented only on this type 
of disturbance. 

Theory 

Jet Velocity and Temperature Characteristics 

disturbances, the radial distribution of mean 
velocity and temperature in the two-stream axisym- 
metric jet must be specified. The conditions 
selected for study are among the cases presented 
in Ref. 10 as being typical. For these cases the 
nominal primary jet Mach number is 0.7, the nomi- 
nal fan-to-primary velocity ratio is 0.68 and the 
primary stream is heated. The nozzle used for 
this case had a secondary to primary flow area 
ratio of 1.9 since the primary nozzle diameter is 
10 cm, the secondary nozzle diameter is 17.6 cm, 
and the primary nozzle thickness is 0.46 cm. The 
actual velocities and temperatures are shown in 
Table I. 
secondary is shown while in Table I(b) the case 
with the hot secondary is presented. 

The velocity and temperature profiles were 
constructed using a basic profile shape. 
same method was used in Ref. 11. The basic Dro- 

In order to determine the stability of the 

In Table I(a) the case with the cold 

The 

where the constants B and 6 are determined 
from experimental data. The constants used were 
determined by curve fitting data given in Ref. 10 
and they are shown in Table I .  Measured and cal- 
culated velocity and temperature profiles are 
compared in Figs. 1 and 2. 

the experimental velocity profile could be 
achieved by adding together two separate profiles 
specified by Eq. (1) with appropriate constants 
and appropriate weighting coefficients. The 
resulting equation for the curve fit to the veloc- 
ity profile is 

It was found that a reasonable curve fit to 

Near the nozzle where the velocity profile for the 
primary and secondary jets have a top hat profile 
the values of B are large (B = 10 and 

B = 20) and Gu(0) is unity. However, at large 

x/D the profiles are broad and the values of B 
are nearer unity. In this region at r = 0 the 
value of G(0) is not unity. Since the actual 
velocity profile must at r = 0 have a value of 
unity, the basic shape is normalized by dividing 
by Gu(0). Thus the actual velocity profile 
used is 

" S  

( 3 )  
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where iCix is the mean velocity on the center- 
line at a given x/Dp position. 

mental temperature profile for the case with a 
cold secondary is 

The equation used to curve fit the experi- 

(4) 

The constants used were determined by curve fit- 
ting data given in Ref. 10 and they are shown in 
Table I. 
case with a hot secondary is similar to that used 
for the velocity profile 

The temperature profile used for the 

Again, just as for the velocity profiles the 
actual velocity profile used for this case is 
normalized by GT(O). 

Again the constants used were determined by curve 
fitting data given in Ref. 10 and they are shown 
in Table I. 

The momentum loss boundary layer thickness, 
ec, is used as the characteristic of the free jet 
shear layer. 
as follows: 

For compressible flow, it is defined 

Note, however, that the incompressible momentum 
boundary layer thickness defined as 

is more frequently used to characterize the thick- 
ness of the velocity shear layer for jet shear 
layer instability studies even for compressible 
flow.12 Consequently, it is used again in this 
paper. 

Linearized disturbance equations 

The disturbance equations are derived by 
introducing small disturbances u',v',w',P',P' 
into the equations of momentum and mass conserva- 
tion and keeping only the linear terms. The 
equations are linearized about the basic jet flow 
which is assumed to be locally parallel with 
being the axial velocity component o f  the undis- 
turbed flow. The Reynolds number of the flow is 
assumed to be large so that the flow is inviscid. 
The flow i s  also assumed to be isentropic. 

U(r) 

The disturbance is assumed to be a spatially 
growing wave of the type 

where the radian frequency, 6, and the integer 
azimuthal wave number, m, are real, while the 
eigenvalue wavenumber, a, is complex. The real 
value of a, ar is the axial wave number. The 
imaginary value of a determines the spatial 
growth rate, -ai. If -a' is greater than zero 
the wave defined by Eq. 19)  grows as it propagates. 
The propagation phase velocity Cph is given by 
Blare 

Using Eq. ( 9 ) ,  the disturbance equations can 
be reduced to a single equation for the pressure 
perturbation p(r): 

where 

and a is the acoustic speed of sound. Equations 
of this form for the fluctuatina Dressure are well 
known and given in Refs. 15 and<lk. 

Near the jet axis (r + 0) and in the ambien 
fluid far from the jet (r + - )  the velocity profi 
U(r), is constant and dU(r)/dr i s  zero. In 
these regions Eq. (10) reduces to a form of the 
Bessel equation. Consequently, the asymptotic 
solutions to Eq. 10 are given by the modified 
Bessel functions I,,, and K, of order m. The 
boundary conditions for the pressure require that 
p(0) has to be bounded and p(-) has to be zero. 
Hence, near the jet axis (r + 0) 

e, 

and in the ambient fluid (r + -) 

The numerical procedure used to solve the 
eigenvalue problem is a shooting method similar to 
that described in Ref. 15. Another method based 
on a finite difference scheme has been recently 
developed.21 Both methods give similar results 
when applied to the same test problems. 
near the neutral stability point, convergence is a 
problem with the shooting method. 
must be reduced until one is sure that the result 
is independent of this parameter in order to be 
sure the shooting method has produced a valid 
result. 

However, 

The step size 

The differential Eq. (10) is scaled using the 

x/Dp, 

incompressible momentum boundary shear layer thick- 
ness, e, and the velocity difference AU, between 
- the jet centerline velocity at a particular 
UClx, and the ambient jet velocity, U,. 
case studied, A U  is the jet centerline velocity, 

For the 
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- 
U c l x ,  s i n c e  t h e  ambient v e l o c i t y  i s  zero.  
r e s u l t i n g  d i f f e r e n t i a l  equat ion  t h e n  depends on two  
n o r m a l i z e d  parameters,  t he  d imens ion less  s p a t i a l  
g rowth  r a t e  -a ie  and the  d imens ion less  f requency ,  

The complex d i f f e r e n t i a l  e q u a t i o n  w r i t t e n  as a 
f i r s t  o r d e r  v e c t o r  system i s  i n t e g r a t e d  n u m e r i c a l l y  
b y  a Runge-Kutta procedure. The i n f i n i t e  i n t e g r a -  
t i o n  r e g i o n  i s  d i v i d e d  i n t o  two f i n i t e  r e g i o n s ,  an 
i n n e r  r e g i o n  
r h  < r < r,. The values o f  ro and r, a r e  
chosen such t h a t  dU/dr  i s  sma l l  and t h e  i n t e g r a -  
t i o n  o f  Eq. (10) can be  s t a r t e d  a t  t h e s e  p o i n t s .  

The 

6e/AU. 

ro < r < q, and an o u t e r  r e g i o n  

I n  t h e  i n n e r  r e g i o n  

where f o  ( r )  rep resen ts  t h e  numer i ca l  Runge-Kutta 
s o l u t i o n  i n  t h e  i n n e r  reg ion .  I n  t h e  i n n e r  r e g i o n  
t h e  r lumer ica l  i n t e g r a t i o n  goes f r o m  r toward  
r h .  
f o r  t h e  Runge-Kutta i n t e g r a t i o n  f r o m  ro t o  r h  
i s  f r o m  Eq. (11) 

Near t h e  o r i g i n  the  p roper  i n i t i a ?  c o n d i t i o n  

I n  t h e  o u t e r  r e g i o n  t h e  numer i ca l  Runge-Kutta 
s o l u t i o n  i s  g i v e n  b y  

I n  c o n t r a s t  t o  t h e  i nne r  reg ion ,  t h i s  Runge-Kutta 
s o l u t i o n  i s  o b t a i n e d  by i n t e g r a t i n g  f r o m  
toward  t h e  o r i g i n .  Far  f r o m  t h e  j e t  f r o m  Eq. (12)  
t h e  p r o p e r  i n i t i a l  c o n d i t i o n  f o r  t h e  Runqe-Kutta 
i n t e g r a t i o n  f r o m  r, t o  r h  i s  

r, 

The e igenva lue  i s  de termined b y  an i t e r a t i  
p rocedure .  The e igenva lue  i s  t h e  va lue  o f  a 
w h i c h  makes p and dp /d r  con t inuous  a t  r = 
Hence, t h e  e igenva lue  equat ion  f o r  a i s  

ve 

r h -  

where f o  and Ce . f e  a r e  t h e  s o l u t i o n s  i n  t h e  
i n n e r  and o u t e r  reg ions .  The c o n s t a n t  Ce i s  
de te rm ined  b y  t h e  c o n d i t i o n  t h a t  a t  r h  t h e  i n n e r  
and o u t e r  p r e s s u r e  e i g e n f u n c t i o n  s o l u t i o n s  have 
t h e  same value. 

The e igenva lue  i s  de termined i n  a two  s t e p  
procedure .  The f i r s t  s tep  uses a t e c h n i q u e  
employed i n  Ref. 22. The t e c h n i q u e  i s  based on a 
theorem i n  complex v a r i a b l e  t h e o r y  wh ich  s t a t e s  
t h a t  t h e  number o f  zeros w i t h i n  a c l o s e d  c o n t o u r  
equa ls  t h e  n e t  m u l t i p l e s  o f  2n b y  wh ich  t h e  
phase ang le  o f  H (a )  changes around t h e  contour .23  
T h i s  method i s  ex t remely  p o w e r f u l  s i n c e  b y  u s i n g  
it, one can  be  s u r e  one has found  t h e  most u n s t a b l e  
e igenva lue .  The method a l s o  y i e l d s  an accu ra te  
i n i t i a l  guess. The i n i t i a l  guess i s  t h e n  used b y  
a l e a s t  squares f u n c t i o n  m i n i m i z a t i o n  i t e r a t i v e  
p rocedure ,  wh ich  f i n d s  t h e  e igenva lue .  

R e s u l t s  

(m = 1) s p a t i a l  g rowth  r a t e s  and phase v e l o c i t i e s  
a t  x/Dp = 1 f o r  a two-stream c o p l a n a r  j e t  w i t h  
a secondary t o  p r i m a r y  v e l o c i t y  r a t i o  o f  0.68 and 
f o r  b o t h  c o l d  and h o t  secondary  f l o w s  a r e  shown i n  
F i g s .  3 and 4. A l s o  shown a r e  r e s u l t s  p resen ted  
i n  Ref .  11 o b t a i n e d  a t  x /D  = 1 f o r  m = 0 and 
m = 1 f o r  a two-stream cop lanar  j e t  w i t h  a sec- 
ondary  t o  p r i m a r y  v e l o c i t y  r a t i o  0.3 w i t h  c o l d  
secondary  f low.  A t  x / D  - 1 t h e  boundary  l a y e r  
t h i c k n e s s  f o r  t h e  case w i e r e  t h e  v e l o c i t y  r a t i o  i s  
0.3 i s  0.899 cm. The boundary l a y e r  t h i c k n e s s  f o r  
t h e  cases where t h e  v e l o c i t y  r a t i o  i s  0.68 i s  
5.11 cm when t h e  secondary  f l o w  i s  c o l d  and 3.08 cm 
when i t  i s  h o t .  The n o z z l e  geometry f o r  a l l  cases 
i s  i d e n t i c a l .  F i g u r e  3 shows t h e  d imens ion less  
s p a t i a l  g rowth  r a t e ,  -ai,e as a f u n c t i o n  o f  t h e  
d imens ion less  f requency ,  Be/Au, f o r  t h e  axisym- 
m e t r i c  (m = 0 )  d i s t u r b a n c e  and f o r  t h e  f i r s t  o r d e r  
az imu tha l  (m = 1) d is tu rbance .  A t  a l l  f r equenc ies ,  
f o r  a v e l o c i t y  r a t i o  o f  0.68, t h e  ax i symmet r i c  and 
t h e  f i r s t  o r d e r  az imu tha l  d i s t u r b a n c e s  have n e a r l y  
i d e n t i c a l  g rowth  r a t e s .  Fur thermore ,  t h e  magn i tude 
o f  t h e  g rowth  r a t e  f o r  t h e  case o f  c o l d  secondary  
f l o w  i s  much g r e a t e r  t h a n  t h a t  o f  t h e  case w i t h  
h o t  secondary  f l o w .  Note  t h a t  t h e  s p a t i a l  q rowth  
r a t e  w i t h  a v e l o c i t y  r a t i o  o f  0.68 i s  q r e a t e r  t h a n  
t h a t  f o r  a v e l o c i t y  r a t i o  o f  0.3. 

F o r  t h e  c o l d  secondary case w i t h  a j e t  ve loc-  
i t y  r a t i o  o f  0.3, t h e  p r e f e r r e d  e x c i t a t i o n  S t r o u h a l  
number i s  0.05. However, t h e  g rowth  r a t e  i s  v e r y  
low. F o r  t h i s  case i t  i s  b e t t e r  t o  e x c i t e  t h e  
f i r s t  o r d e r  az imu tha l  mode a t  a S t r o u h a l  number o f  
0.45. F o r  t h e  case w i t h  a v e l o c i t y  r a t i o  o f  0.68 
and f o r  b o t h  modes, t h e  case w i t h  a heated  second- 
a r y  f l o w  has i t s  l a r g e s t  g rowth  r a t e  a t  a S t r o u h a l  
number o f  0.2. However, t h e  case w i t h  t h e  c o l d  
secondary f l o w  has i t s  l a r g e s t  g rowth  r a t e  a t  a 
S t r o u h a l  number o f  0.4. 

C a l c u l a t e d  ax i symmet r i c  (m = 0 )  and az imutha ’  

I n  F i g .  4 t h e  a x i a l  phase v e l o c i t y ,  
cph = B / a r ,  f o r  
o f  t h e  f requency  f o r  m = 0 and m = 1. For  a 
s i n g l e  j e t  t h e  phase v e l o c i t y  o f  t h e  ax i symmet r i c  
d i s t u r b a n c e  (m = 0 )  always decreases w i t h  - 
i n c r e a s i n g  f r e q u e n c y  f r o m  t h e  j e t  v e l o c i t y  
a t  z e r o  f requency .  A lso ,  f o r  a s i n g l e  j e t  t h e  
phase v e l o c i t y  o f  t h e  f i r s t  az imu tha l  d i s t u r b a n c e  
i s  always l e s s  t h a n  t h e  phase v e l o c i t y  of  t h e  
ax i symmet r i c  one.6 
m e t r i c  j e t ,  t h e  f requency  dependence o f  t h e  phase 
v e l o c i t i e s  o f  t h e  ax isymmet r ic  and f i r s t  az imu tha l  
d i s t u r b a n c e s  a r e  s i m i l a r  t o  t h o s e  o f  a s i n g l e  j e t . 6  
F o r  a v e l o c i t y  r a t i o  o f  0.68, t h e  phase v e l o c i t y  
i s  l o w e r  i f  t h e  secondary i s  h o t  f o r  t h e  axisym- 
m e t r i c  and f i r s t  o r d e r  az imu tha l  case. Note  t h a t  
t h e  phase v e l o c i t y  f o r  t h e  case w i t h  a v e l o c i t y  
r a t i o  o f  0.68 i s  l ower  t h a n  f o r  t h e  case where 
t h e  v e l o c i t y  r a t i o  i s  0.3. 

X / D  = 1 i s  p l o t t e d  as a f u n c t i o n  

U c l x  

F o r  t h e  two-stream axisym- 

Conc lud ing  Remarks 

I t  has been shown t h a t  t h e  i n s t a b i l i t y  char -  
a c t e r i s t i c s  o f  t h e  two-stream ax i symmet r i c  j e t  
w i t h  a secondary  t o  p r i m a r y  v e l o c i t y  r a t i o  o f  0.68 
a r e  d i f f e r e n t  f r o m  t h o s e  o b t a i n e d  f o r  a secondary 
t o  p r i m a r y  v e l o c i t y  r a t i o  o f  0.3. 
f o r  c o l d  secondary  f l o w  w i t h  a j e t  v e l o c i t y  r a t i o  
o f  0.3, t h e  g rowth  r a t e  o f  t h e  ax i symmet r i c  mode 

F o r  example, 

. 
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(m = 0) is much less than the growth rate of the 
first order azimuthal mode (m = 1). While for 
cold or hot secondary flow with a jet velocity 
ratio of 0.68. The growth rates of the axisym- 
metric mode (m = 0) and first order azimuthal 
mode (m = 1) are equal. 

The presence of the heated secondary stream 
reduced the instability of both modes. 
stream, coplanar jet operating at a secondary to 
primary velocity ratio of 0.68 aerolmechanical 
excitation can be designed to excite either mode. 

References 

For a two- 

1. Stone, J.R.; and McKinzie, D.J. Jr.: Acoustic 
Excitation-A Promising New Means of Controlling 
Shear Layers. NASA TM-83772 1984. 

2. Tanna, H.K.; and Ahuja, K.K.: Tone Excited 
Jets, Part I: Introduction. J. Sound Vib., 
vol. 102, no. 1, Sept. 8, 1985, pp. 57-61. 

3. Ahuja, K.K.; and Whiffen, M.C.: Tone Excited 
Jets, Part 11: Flow Visualization. J. Sound 
Vib. , vol . 102, no. 1, Sept. 8, 1985, pp. 63-69. 

4. Lepicovsky, J.; Ahuja, K.K.; and Burrin, R.H.: 
Tone Excited Jets, Part 111: Flow Measurements. 
J. Sound Vib., vol. 102, no. 1, Sept. 8, 1985, 
pp. 71-91. 

5. Ahuja, K.K.; and Blakney, D.F.: Tone Excited 
Jets, Part IV: Acoustic Measurements. J. 
Sound Vib., vol. 102, no. 1, Sept. 8, 1985, 
pp. 92-117. 

6. Tam, C.K.W.; and Morris, P.J.: Tone Excited 
Jets, Part V: A Theoretical Model and Compar- 
ison with Experiment. J. Sound Vib., vol. 102, 
no. 1, Sept. 8, 1985, pp. 119-151. 

tion of Unsteady Flow in an Axisymmetric Shear 
Layer. AIAA Paper 86-0202, Jan. 1986. 

8. Raman, 6 . :  Enhanced Mixing of an Axisymmetric 
Jet by Aerodynamic Excitation. 
1986. 

7. Scott, J.; and Hankey, W.: Numerical Simula- 

NASA CR-175059, 

9. von Glahn, U.H.: On Some Flow Characteristics 
of Conventional and Excited Jets. AIAA Paper 
84-0532, Jan. 1984. 

Wasserbauer, C.: Velocity and Temperature 
Characteristics of Two-Stream, Coplanar Jet 
Exhaust Plumes. 

10. von Glahn, U.; Goodykoontz, J.; and 

AIAA Paper 84-2205, Aug. 1984. 

11. Miles, J.H.: Spatially Growing Disturbances 
in a Two-Stream, Coplanar Jet. 
86-0041, Jan. 1986. 

Prog. Aerospace Sci., vol. 21, no. 3, 1984, 

AIAA Paper 

12. Michalke, A.: Survey on Jet Instability Theory. 

pp. 159-199. 

13. Crighton, D.G.: Instability and Acoustic Pro- 
perties of Coaxial Jets. Bull. Am. Phys. 
vol. 29, no. 4, 1985. 

14. Michalke, A., and Hermann, G.: On the Inviscid 
Instability of a Circular Jet with External 
Flow. J. Fluid Mech., vol. 114, Jan. 1.982, 
pp. 343-359. 

15. Michalke, A., Instability of a Compressible 
Circular Free Jet with Consideration o f  the 
Influence of the Jet Boundary Layer Thickness. 
(Instibi 1 i tat eines kompressiblen runden 
Frestrahls unter Berucksichtigung des 
Einflusses der Strahlgrenzschichtdicke.  
Zeitschrift fur Flugwissenchaften vol. 19, 
no. 8/9, 1971, pp. 319-328). NASA-TM-75190, 
1977. 

16. Morris, P.J.: Flow Characteristics of the 
Large Scale Wave-Like Structure of a Supersonic 
Round Jet. J. Sound Vib., vol. 53, no. 2, 
July 22, 1977, pp. 223-244. 

17. Morris, P.J.: The Spatial Viscous Instability 
of Axisymmetric Jets. J. Fluid Mech., vol. 77, 
pt. 3, OCt. 8, 1976, pp. 511-529. 

18. Crighton, D.G.; and Gaster, M.: Stability of 
Slowly Diverging Jet Flow. J. Fluid Mech., 
vol. 77, pt. 2, Sept. 24, 1976, pp. 397-413. 

19. Plaschko, P.: Helical Instabilities o f  Slowly 
Diverging Jets. J. Fluid Mech., vol. 29, 
pt. 2, May 28, 1979, pp. 209-215. 

20. Stromberg, J.L.; McLaughlin, D.K.; and Troutt, 
T.R.: Flow Field and Acoustic Properties of a 
Mach Number 0.9 Jet at Low Reynolds Number. 
J. Sound Vib., vol. 72, no. 2, Sept. 22, 1980, 
pp. 159-176. 

Axisymmetric Jets. Master Thesis, University 
of Arizona, 1985. 

Stability of Pipe Poiseuille Flow. 
Fluids, vol. 11, no. 7, July 1968, 
pp. 1404-1409. 

Systems. Addison-Wesley, 1962, pp. 157-158. 

21. Paragiri, R.: The Stability Analysis of 

22. Lessen, M.; Sadler, S.G.; and Liu, T.-Y.: 
Phys. 

23. Kaplan, W.: Operational Methods for Linear 

5 



TABLE I . . JET TEST CONDITIONS AND PROFILE PARAMETERS 

%. 
cm. cm 

e 

( a )  C o l d  Secondary F low 

B U c l x .  T c l x .  up 
m/s K 

~~ ~~ ~ 

E x i t  Mach number . . . . . . . . . . . . . . .  0.69 
P r i m a r y  j e t  nozz le  d iamete r .  cm . . . . . . . .  1 0  
Secondary  o r  f a n  j e t  n o z z l e  d iamete r .  cm . . .  17.6 
P r i m a r y  j e t  nozz le  w a l l  t h i c k n e s s .  cm . . . . .  0.46 
Secondary  t o  p r i m a r y  n o z z l e  a r e a  r a t i o  . . . .  1.9 
P r i m a r y  j e t  e x i t  v e l o c i t y .  m/s . . . . . . . .  459 
Secondary  j e t  e x i t  v e l o c i t y .  mls . . . . . . .  314 
P r i m a r y  j e t  e x i t  t empera tu re .  K . . . . . . .  1092 
Secondary  j e t  e x i t  t empera tu re .  K . . . . . .  248 

I Rple 

12.75 

1081  
1062 

. 
6 

UP 

0.8 . 6 . 6 . 6 . 7 

( b )  H o t  Secondary F low 

E x i t  Mach number . . . . . . . . . . . . . . .  0.71  
P r i m a r y  j e t  nozz le  d iamete r .  cm . . . . . . . .  10 
Secondary o r  f a n  j e t  n o z z l e  d i a m e t e r .  cm . . .  17.6 
P r i m a r y  j e t  n o z z l e  w a l l  t h i c k n e s s .  cm . . . . .  0.46 
Secondary t o  p r i m a r y  n o z z l e  a r e a  r a t i o  . . . .  1.9 
P r i m a r y  j e t  e x i t  v e l o c i t y .  mls . . . . . . . .  459 
Secondary j e t  e x i t  v e l o c i t y .  mls . . . . . . .  314 
P r i m a r y  j e t  e x i t  t e m p e r a t u r e .  K . . . . . . .  1050 
Secondary j e t  e x i t  t empera tu re .  K . . . . . .  545 

I R p / e  

8 
12.75 

U c l x .  I Tc;x. I BUP 
m/s 

2.2 1 4 . 3 

. 9 . 6 
1.3 

6 
us 

1.8 
1.9 
1.8 
1.6 
2.3 

B 
TP 

6 
6 
3 . 8 . 8 

6 
UP 

0.7 . 8 . 5 . 3 . 3 

r$ . 7 1.7 



1 .o 

.8 

.7 

.5 

.3 

.2 

0 
( A )  COLD SECONDARY: Tp, 1092 K: T,, 248 K: up. 459 Ws: 

us, 314 Ws. 

1 .o 

.8 

.7 

.5 

.3 

.2 

0 1 .o 
r/R, 

2.5 

(B) HOT SECONDARY: Tp, 1050 K,  T,, 545 K: up. 459 WS: 
I,. 314 WS. 

FIGURE 1.- COMPARISON OF CALCULATED AND MEASURED RADIAL 
VELOCITY PROFILES FOR: us/bp RATIO OF 0.68: NOZZLE 
AREA RATIO,  1.9. 



1 .o 

.8 

.7  

WD icjx, K 

DATA 

(B) HOT SECONDARY; Tp, 1050 K; T,, 545 K; up, 459 M / S :  

FIGURE 2.- COMPARISON OF CALCULATED AND MEASURED RADIAL 
R A T I O  OF 0.68; NOZZLE 

us. 314 M / S .  

TEMPERATURE PROFILES FOR: 
AREA RATIO,  1.9. 



r V E L O C I T Y  RATIO 0.68. - 

8 
8 

f - 
r V E L O C I T Y  RATIO 0.68, \-.- 

HOT SECONDARY FLOW ------ 
COLD SECONDARY FLOW 

(A) m = 0. 

r V E L O C I T Y  RATIO 0.68, 
' COLD SECONDARY FLOW 

r VELOC I TY RAT IO 0.68. 

1 
0 2 4 6 8 1 .o 

P8lAU 

m m =  I .  

AND FIRST AZIMUTHAL (m = 1) DISTURBANCE AT X/D = 1. 
FIGURE 3. -  SPATIAL GROWTH RATE OF THE AXISYWTRIC (m = 0) 



1 .o 

.8 

.6 

.4 

,-VELOCITY RATIO 0.30, 
COLD SECONDARY FLOW 

'\ ,-VELOCITY RATIO 0.68, 
' 4  COLD SECONDARY FLOW 

'-- ~ 

-9- -___---..------ 
'--VELOCITY RAT IO 0.68, 

HOT SECONDARY FLOW 

3 0  

" 1.0 

1 I 1 I 
< 
r 
0. 

(A )  m =  0. 
- 

.8 

.6 

.4 

.2 

0 

L r V E L O C I T Y  RATIO 0.3, 
SECONDARY FLOW 

\\ 

VELOCITY RATIO 0.68, 
- 

/ 
LVELOCITY RATIO 0.68, 

HOT SECONDARY FLOW 

2 4 6 8 1 .o 
pe/AU 

(B) m =  1. 

FIGURE 4.- AXIAL PHASE VELOCITY OF THE AXISYMMETRIC 
(m = 0) AND FIRST AZIMUTHAL (m = 1) DISTURBANCE AT 
X/D = 1. 



2. Government Accession No. NASA TM-88922 1. Report No. 

AIAA-87-0056 . 
4. Title and Subtitle 

3. Recipient's Catalog NO. 

5. Report Date 

2. Sponsoring Agency Name and Address I Technical Memorandum 

Spatially Growing Disturbances In a HIgh Velocity 
Ratio Two-Stream, Coplanar Jet 

7. Author@) 

Jeffrey H. Miles 

9. Performing Organization Name and Address 

National Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 44135 

National Aeronautics and Space Administration 
Washington,: D.C. 20546 

6. Performing Organlzation Code 

505-62-21 
8. Performing Organization Report No. 

E-3255 
10. Work Unit No. 
- 

11. Contract or Grant No. 

13. Type of bport and Period Covered 

14. Sponsoring Agency Code 

7. Key Words (Suggested by Author(s)) 

I 
5. Supplementary Notes 

18. Distribution Statement 

Prepared for the 25th Aerospace Sciences Meeting, sponsored by the AmerIcan 
Institute of Aeronautics and Astronautics, Reno, Nevada, January 12-15, 1987. 

Instability waves; Two-stream coplaner 
jet; Shear layer instability 

6. Abstract 

The influence of cold and heated secondary flow on the Instability of a two- 
stream, coplanar jet having a 0.7 Mach number heated primary jet for a nominal 
fan to primary velocity ratio of 0.68 was investigated by means of inviscid lin- 
earized stability theory. The instability properties of spatially growing axi- 
symmetric and first order azimuthal disturbances were studied. 
the Instability characteristics of the two-stream jet with a velocity ratio o f  
0.68 are very different from those of a single stream jet, and a two-stream, 
coplanar jet having a 0.9 Mach number heated primary jet and a cold secondary jet 
for a fan t o  primary velocity ratio of 0.30. For X/D = 1 and in comparison to 
the case where the velocity ratio was 0.3. the presence of the fan stream with a 
velocity ratio of 0.68 enhanced the instability of the jet and increased the 
unstable frequency range. 
order azimuthal mode (m = 1) have similar spatial growth rates where the velocity 
ratio is 0.68 while for a velocity ratio of 0.3 the growth rate of the first 
order azimuthal mode (m = 1 )  is greater. 
flow results showed that for a velocity ratio of 0.68 the growth rate is greater 
for the case with cold secondary flow. 

It was found that 

However, the axisymmetric mode (m = 0) and the first 

Comparing the cold and hot secondary 

Unclassified - unlimited 
STAR Category 02 

9. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 

Unc 1 ass i f i ed Unclassified 
22. Price' 


